Academic Articles


Publications relating to Alaska or the Arctic

Arrigo, K.R. Perovich, D.K., Pickart, R.S., Brown, Z.W., Dijken, G.L.V. Lowry, K.E., Mills, M.M., Palmer, M.A., Balch, W.M., Bates, N.R., Benitez-Nelson, C.R., Brownlee, E., Frey, K.E., Laney, S.R., Mathis, J.T., Matsuoka, A., Mitchell, B.G., Moore, G.W.K., Reynolds, R.A., Sosik, H.M., Swift, J.H., (2014). Phytoplankton blooms beneath the sea ice in the Chukchi Sea, Deep Sea Research Part II: Topical Studies in Oceanography, ISSN 0967-0645,

Arrigo, K.R., Perovich, D.K., Pickart, R.S., Brown, Z.W., Dijken,G.L., Lowry, K.E., Mills, MM., Palmer, M.A., Balch, W.M., Bahr, F., Bates, N.R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K.E., Garley, R., Laney, S.R., Lubelczyk, L., Mathis, J.T., Atsushi, A., Mitchell, B.G., Kent Moore, G.W., Ortega-Reteurta, E., Pal, S., Polashenski, C.M., Reynolds, R.A., Scheiber, B., Sosik, H.M., Stephens, M., Swift, J.H., (2012). Massive Phytoplankton Blooms Under Arctic Sea Ice. Science, Vol. 336, doi: 10.1126/science.1215065.

Bates, N. R. and Mathis, J. T. (2009). The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks.  Biogeosciences, 6, 2433–2459.

Bates, N. R., Mathis, T., L. Cooper, W., (2009). Ocean acidification and biologically induced seasonality of carbonate mineral saturation states in the western Arctic Ocean, J. Geophys. Res., 114, C11007, doi:10.1029/2008JC004862.

Bates, N.R., Cai, W-J., Mathis, J.T., (2011). The Ocean Carbon Cycle in the Western Arctic Ocean: Distributions and Air-Sea Fluxes of Carbon Dioxide. Oceanography 24(3):186–201.

Bates, N.R., Garley, R., Frey, K.E., Shake, K.L., Mathis, J.T., (2014). Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice.Biogeosciences Discussions.  doi:10.5194/bgd-11-1097-2014

Bates, N.R., Mathis, J.T., Jefferies, M.A., (2011). Air-Sea CO2 fluxes on the Bering Sea Shelf. Biogeosciences, 8, 1237-1253.

Bates, N.R., Moran, S.B., Hansell, D.A., Mathis, J.M. (2006). An increasing CO2 sink in the Arctic Ocean due to sea-ice loss?  (Geophys. Res. Letters, 33, L23609).

Bates, N.R., Orchowska, M.I., Garley, R., Mathis, J.T., (2012). Present day vulnerability of the western Arctic seafloor to seasonal ocean acidification. Biogeosciences Discuss., 9, 14255–14290.

Bates, N.R., Orchowska, M.I., Garley, R., Mathis, J.T., (2013). Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean – how biological processes exacerbate the impact of ocean acidification. Biogeosciences, 10, 1-29.  doi:10.5194/bg-10-1-2013.

Bellerby, R., Anderson, L., Azetsu-Scott, K., Croot, P., MacDonald, R., Miller, L., Olafsson, J., Steiner, N., Anersson, A., Carlson, C., Chierici, M., Fransson, A., Jeansson, E., Mackenzie, F.,Mathis, J., Olsen, A., Passow, U., Yamamoto-Kauai, M., (2013). Acidification in the Arctic Ocean.  AMAP Assessment 2013: Arctic Ocean Acidification. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. viii + 99 pp. ISBN – 978-82-7971-082-0.

Cai, W.J., Bates, N.R., Guo, L., Anderson, L.G., Mathis, J.T., Wanninkhof, R., Chen, L., (2014). Carbon Fluxes Across Boundaries in the Pacific Sector of the Arctic Ocean in a Changing Environment. In The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment, J.M. Grebmeier and W. Maslowski (eds.), Springer Science+Business Media, Dordrecht, 178–222.

Cross, J. N., Mathis, J.T., Bates, N.R., (2012) Hydrographic Controls on Net Community Production and Total Organic Carbon Distributions in the Eastern Bering Sea. Deep Sea Research II, doi:10.1016/j.dsr2.2012.02.003.

Cross, J.N., Mathis, J.T., Bates, N.R., Byrne, R.H., (2013). Conservative and non-conservative variations of total alkalinity on the Southeastern Bering Sea Shelf.  Marine Chemistry, Vol. 154, 100-112.

Cross, J.N., Mathis, J.T., Frey, K., Cosca, C., Danielson, S.L., Bates, N.R., Feely, R.A., Takahashi, T., Evans, W., (2014). Annual sea-air CO2 fluxes in the Bering Sea: Insights from new autumn and winter observations of a seasonally ice-covered continental shelf.  Journal of Geophysical Research.  doi: 1002/2013JC009579


Cross, J.N., Mathis, J.T., Lomas, M.W., Moran, S.B., Baumann, M.S., Shull, D., Mordy, C.W., Ostendorf, M. L., Bates, N.R., Stabeno, P.J., Grebmeier, J. M., (2014). Integrated Assessment of the Carbon Budget in the Southeastern Bering Sea.  Deep Sea Research II: Topical Studies in Oceanography,

Day, R.H., Weingartner, T.J., Hopcroft, R.R., Aerts, L.A., Blanchard, A.L., Gall, A.E., Gallaway, B.J., Hannay, D.E., Holladay, B.A., Mathis, J.T., Norcross, B.L., Questel, J.M., Wisdom, S.S., (2013). The offshore northeastern Chukchi Sea, Alaska: a complex high-latitude ecosystem.  Shelf Res., doi: 10.1016/j.csr.2013.02.002.

Evans, W. and Mathis, J.T., (2013). The Gulf of Alaska coastal ocean as an atmospheric CO2 Cont. Shelf Res., 65, doi: 10.1016/j.csr.2013.06.013, 52–63.

Evans, W., Mathis, J.T., Cross, J.N., (2014). Calcium Carbonate Corrosivity in an Alaskan Inland Sea. Biogeosciences, 11, 1–15, doi:10.5194/bg-11-1-2014.

Evans, W., Mathis, J.T., Cross, J.N., Bates, N.R., Frey, K.E., and Else, B.G.T., et al., 2015. Sea-air CO2 exchange in the western Arctic coastal ocean. Global Biogeochemical Cycles. doi: 10.1002/2015GB005153.

Evans, W., Mathis, J.T., Ramsay, J., Hetrick, J., 2015. On the Frontline: Tracking Ocean Acidification in an Alaskan Shellfish Hatchery.  PLOS One. doi: 10.1371/journal.pone.0130384

Evans, W., Mathis, J.T., Winsor, P., Whitledge, T., Statscewich, H., (2013). A regression modeling approach for studying carbonate saturation states on the northern Gulf of Alaska shelf. Journal of Geophysical Research: Oceans, Vol. 118, 1–14, doi:10.1029/2012JC008246, 2013.

Fabry, V.J., McClintock, J.B., Mathis, J.T., Grebmeier, J.M., (2009) Ocean Acidification at High Latitudes: The Bellwether. Oceanography, Vol. 22, Num. 4.

Frisch, L.C., Mathis, J.T., Kettle, N.P., Trainor, S.F., 2015. Gauging perceptions of ocean acidification in Alaska.  Marine Policy. doi:10.1016/j.marpol.2014.11.022

Hauri, C., Winsor, P., Juranek, L., McDonnell, A.M.P., Takahashi, T., Mathis, J.T., (2013). Wind-driven mixing causes a reduction in the strength of the continental shelf carbon pump in the Chukchi Sea. Geophysical Research Letters, Vol. 40, 1-5, doi:10.1002/2013GL058267.

Hurst, T. P., Laurel, B.J., Mathis, J.T., Tobosa, L. R., 2015. Effects of elevated CO2 levels on eggs and larvae of a North Pacific flatfish.  ICES Journal of Marine Science. doi:1093/icesjms/fsv050

Hurst, T., Fernandez, E., Mathis, J.T., Miller, J.A., Stinson, C.M., Ahgeak, E.F., (2012). Resiliency of Juvenile Walleye Pollock to Projected Levels of Ocean Acidification.  Aquatic Biology, VOL. 17: 247-259.  doi: 10.3354/ab00483.

Hurst, T.P., Fernandez, E.R., and Mathis, J.T., (2013). Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci., 70(4), doi: 10.1093/icesjms/fst053, 812–822.

Itoh, M., Pickart, R.S., Kikuchi, T., Fukamachi, Y., Ohshima, K.I., Simizu, D., Arrigo, K.R., Vagle, S., He, J., Ashijan, C., Mathis, J.T., Nishino, S., Nobre, C., 2015. Water properties, heat and volume fluxes of Pacific water in Barrow Canyon during summer 2010.  Deep Sea Research Part I: Oceanographic Research Papers.

Kadko, D., Pickart, R.S., Mathis, J.T., (2008). Age Characteristics of a Shelf-Break Eddy in the Western Arctic and Implications for Shelf-Basin Exchange. (Journal of Geophysical Research, Vol. 113, C02018).

Lepore, K., Moran, S.B., Grebmeier, J. M., Cooper, L.W., Lalande, C., Maslowski, W., Hill, V., Bates, N.R., Hansell, D.A., Mathis, J.T., Kelly, R.P (2006). Seasonal and interannual changes in POC export and deposition in the Chukchi Sea.  (Journal of Geophysical Research, Oceans, 112, C10024, doi 10.1029/2006JC003555).

Llinas, L., Pickart, R.S., Mathis, J.T., Smith, S.L., (2008). Zooplankton inside an Arctic Ocean cold-core eddy: Probable origin and date.  Deep Sea Research II, doi: 10.1016/j.dsr2.2008.10.020.

Lomas, M.W., Moran, S.B., Casey, J.R., Bell, D.W., Tiahlo, M., Whitefield, J., Kelly, R.P.,Mathis, J.T., Cokelet, E.D., (2012). Spatial and seasonal variability of primary production in the Eastern Bering Sea shelf. Deep Sea Research II, doi:10.1016/j.dsr2.2012.02.010.

Mathis, J.T. (2011). The Extent and Controls on Ocean Acidification the Western Arctic Ocean and Adjacent Continental Shelf Seas [in Arctic Report Card2011],

Mathis, J.T. (2012) [The Arctic] Ocean acidification [in “State of the Climate in 2011”]. Bull. Amer. Meteor. Soc., 93 (7), S145–S147.

Mathis, J.T. and Questel, J.M., (2013). The Impacts of Primary Production and Respiration on the Marine Carbonate System in the Western Arctic: Implications for CO2 Fluxes and Ocean Acidification.  Shelf Res., doi: 10.1016/j.csr.2013.04.041

Mathis, J.T., (2013). “New Insights on Ocean Acidification,” AccessScience (McGraw Hill Education, 2013),

Mathis, J.T., and Cross, J.N., Evans, W., and Doney, S.C., 2015. Ocean acidification in the Pacific-Arctic Region. Oceanography Magazine. doi: 10.5670/oceanog.2015.36

Mathis, J.T., Bates, N.R., Hansell, D.A., Babila, T., (2008). Interannual Variability of Net Community Production Over the Northeast Chukchi Sea Shelf.  Deep Sea Research II, doi:10.1016/j.dsr2.2008.10.017.

Mathis, J.T., Byrne, R.H., McNeil, C.L., Pickart, R.P., Juranek, L., Liu, S., Ma, J., Easley, R.A., Elliot, M.W., Cross, J.N., Reisdorph, S. C., Morison, J., Lichendorph, T., Feely, R.A., 2012. Storm-Induced Upwelling of High pCO2 Waters onto the Continental Shelf of the Western Arctic Ocean and Implications for Carbonate Mineral Saturation States. Res. Lett. Vol. 39, L07606, doi:10.1029/2012GL051574.

Mathis, J.T., Cooley, S.R., Lucey, N., Colt, S., Ekstrom, J., Hurst, T., Hauri, C., Evans, W., Cross, J.N., Feely, R.A., (2015). Ocean Acidification Risk Assessment for Alaska’s Fishery Sector. Progress in Oceanography. doi: 1016/j.pocean.2014.07.001

Mathis, J.T., Cross, J.N., Bates, N.R., (2011). Coupling Primary Production and Terrestrial Runoff to Ocean Acidification and Carbonate Mineral Suppression in the Eastern Bering Sea Geophys. Res., 116, C02030, doi:10.1029/2010JC006453, 2011.

Mathis, J.T., Cross, J.N., Bates, N.R., (2011). The Role of Ocean Acidification in Systemic Carbonate Mineral Suppression in the Bering Sea. Res. Lett., 38, L19602, doi:10.1029/2011GL048884.

Mathis, J.T., Cross, J.N., Bates, N.R., Lomas, M.L., Moran, S.B., Mordy, C.W., Stabeno, P., (2010). Seasonal Distribution of Dissolved Inorganic Carbon and Net Community Production on the Bering Sea Shelf (Biogeosciences, 7, 1769–1787, doi:10.5194/bg-7-1769-2010).

Mathis, J.T., Cross, J.N., Evans, W., Anderson, L., Yamamoto-Kawai, M., (2014). Ocean Acidification in the Arctic. In State of the Climate in 2013, Blunden J. and Arndt, D.S, eds. The Arctic. Bull. Am. Meteorol. Soc.

Mathis, J.T., Cross, J.N., Monacci, N., Stabeno, P., Feely, R.A., (2013). Evidence of prolonged aragonite undersaturations in the bottom waters of the southern Bering Sea shelf from autonomous sensors. Deep Sea Research II,

Mathis, J.T., Grebmeier, J.M., Hansell, D.A., Hopcroft, R.R., Kirchman, D.L., Lee, S.H., Moran, S.B., Bates, N.R., VanLaningham, S., Cross, J.N., Cai, W.J., (2014). Carbon Biogeochemistry of the Western Arctic: Primary Production, Carbon Export and the Controls on Ocean Acidification.  In The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment, J.M. Grebmeier and W. Maslowski (eds.), Springer Science+Business Media, Dordrecht, 223-268.

Mathis, J.T., Hansell, D.A. Kadko, D., Bates, N.R., Cooper, L.W., (2007b). Determining net dissolved organic carbon production in the hydrographically complex western Arctic Ocean.  (Limnol. Oceanogr., 52(5), 1789–1799).

Mathis, J.T., Hansell, D.A., Bates, N.R. (2005) Strong hydrographic controls on spatial and seasonal variability of dissolved organic carbon in the Chukchi Sea (Deep-Sea Research II, 52, 3245-3258).

Mathis, J.T., Hauri, C., Cross, J.N., (2013): [Arctic] Ocean acidification [in “State of the Climate in 2012”]. Amer. Meteor. Soc., 94 (8), S121-S123.

Mathis, J.T., Pickart, R.S., Hansell, D.A., Kadko, D., Bates, N.R. (2007a). Eddy transport of organic carbon and nutrients from the Chukchi Shelf:  Impact on the upper halocline of the western Arctic Ocean. (J. of Geophys. Res. 112, C05011, doi: 10.1029/2006JC003899).

Moran, S.B., Lomas, M.L., Kelly, R.P., Iken, K., Gradinger, R., Mathis, J.T., and Propokenko, M., (2012). Sea-ice control of lower trophic carbon partitioning in the eastern Bering Sea.  Deep Sea Research II, doi:10.1016/j.dsr2.2012.02.011.

Oxtoby, L.E., T. Mathis, L.W. Juranek, and M.J. Wooller. 2015. Estimating stable carbon isotope values of microphytobenthos in the arctic for application to food web studies. Polar Biology. doi:10.1007/s00300-015-1800-2

Pickart, R.S., Spall, M.A., Mathis, J.T., (2013). Dynamics of Upwelling in the Alaskan Beaufort Sea and Associated Shelf-Basin Fluxes. Deep Sea Research Part 1:Oceanographic Research Papers, Vol. 76, Pgs. 35-51. doi:10.1016/j.dsr.2013.01.007.

Reisdorph, S.C. and Mathis, J.T., (2014). The dynamic controls on carbonate mineral saturation states and ocean acidification in a glacially dominated estuary.  Estuarine, Costal and Shelf Science, Vol.144, 8-18,

Reisdorph, S.C. and Mathis, J.T., Assessing net community production in a glaciated Alaska fjord.  Biogeosciences Discuss.  doi:10.5194/bgd-11-13029-2014

Schuster, U., McKinley, G.A., Bates, N.R., Chevallier, F., Doney, S., Fay, A., González-Dávila, M., Gruber, N., Jones, S., Krijnen, J., Landschützer, P., Lefèvre, N., Manizza, M., Mathis, J.T., Metzl, N., Olsen, A., Rios, A., Santana-Casiano, J.M., Takahashi, T., Wanninkhof, R., Watson, A.J. (2013). An Assessment of the Atlantic and Arctic Sea-Air CO2 Fluxes, 1990-2009.  Biogeosciences, 10, 607-627, doi:10.5194/bg-10-607.

Strong, A.L., Lowry, K.E., Brown, Z.W., Mills, M.M., van Dijken, G.L., Pickart, R.S., Cooper, L.W., Frey, K.E., Benner, R., Fichot, C.G., Mathis, J.T., Bates, N.R., Arrigo, K.R., 2016. Mass balance estimates of carbon export in different water masses of the Chukchi Sea shelf. Deep-Sea Res. II,

Manuscripts accepted or in revision

Mathis, J.T., Monacci, N.M., Cross, J.N., Hopcroft, R.A., and Stockwell, D.A., 2015. The physical and biological influences on Ocean Acidification in the northern Gulf of Alaska. Journal of Geophysical Research – Oceans, submitted.

Evans, W., Mathis, J.T., Cross, J.N., Frey, K., Else, B., Papkyriakou, T., Bates, N., DeGrandpre, M., Petterson, B., Cai, W.-J., Chen, B.-S., Yamamoto-Kawai, M., Miller, L., Carmack, E., Williams, W. J., Takahashi, T., (2014). Assessing sea-air CO2 exchange in the coastal Arctic Ocean surrounding Canada Basin. (Progress in Oceanography– In Revision).

Cross, J.N., Mathis, J.T., Pickart, R.S., Juranek, L., Transport of Low Omega Water Through Barrow Canyon: Implications for the Halocline of the Arctic Ocean.  (Progress in Oceanography – In Revision)

OA Technology and Methods

Arctic Council and Arctic Monitoring and Assessment Programme Abstract Volume: Arctic Ocean Acidification, Bergen, Norway, 6-8 May 2013

Assmann, S., C. Fram amd A. Koertzinger. 2011. Spectrophotometric high-precision seawater pH determinations for use in underway measuring systems. Ocean Sciences, 7, 597-607.

Bresnahan Jr., Philip J., Todd R. Martz, Yuichiro Takeshita, Kenneth S. Johnson, Makaila LaShomb. 2014. Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in Oceanography, 9:44-60.

Duarte, Carlos M., Iris E. Hendriks, Tommy S. Moore, Ylva S. Olsen, Alexandra Steckbauer, Laura Ramajo, Jacob Carstemsem, Julie A. Trotter, Malcomlm McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. The H.T. Odum Synthesis Essay, Estuaries and Coasts, 36:221-236. DOI 10.1007/212237-013-9594-3

Easley, R.A., Patsavas, M.C., Byrne, R.H., Liu, X., Feely, R.A. Mathis, J.T., (2012). Spectrophotometic measurement of calcium carbonate saturation states in seawater. Sci. Tech., doi: 10.1021/es303631g.

Forecast fish and marine mammal population response to ocean acidification in the North Pacific Ocean and Bering Sea, AFSC Ocean Acidification Research Plan – White Paper. 2006.

Frank, Carsten, Arne Koertzinger, and Wilhelm Petersen. 2013. Autonomous pH and alkalinity sensors for the characterization of the carbonate system in coastal areas. ResearchGate.

Hettinger, Annaliese, Jennifer Hoey, Eric Sanford, Brian Gaylord, Tessa M. Hill, Ann D. Russel, Ocean acidification reduces larval and juvenile growth in the Olympia Oyster (Ostrea lurida). Bodega Marine Laboratory, University of California, Davis.

Kapsenberg, Lydia, Gretchen Hofmann. 2015. Ocean pH time-series and drivers of variability along the northern Channel Islands, California, USA. Limnology and Oceanography. (In press). Using moored SeaFET pH sensors.

Kapsenberg, Lydia, Amanda L. Kelley, Emily C. Shaw, Todd R. Martz, and Gretchen E. Hofmann. 2015. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiements. Scientific Reports, 5:9638 (9 pages), DOI: 10.1038/srep09638.

Liu, X., Byrne, R.H., Lindemuth, M., Easley, R., Mathis, J.T., 2015. An Automated procedure for laboratory and shipboard spectrophotometric measurements of seawater alkalinity: Continuously monitored single-step acid additions. Marine Chemistry.

Martz, T.R., K.L. Daly, R.H. Byrne, J.H Stillman, and D. Turk. 2015. Technology for ocean acidification research: Needs and availability. Oceanography 28(20:40-47).

Mathis, J.T., Sutton, J., Sabine, C.L., Feely, R.A., Constraining coastal CO2 fluxes around the continental United States using moored platforms. (Continental Shelf Research – In Revision).

Newton, J.A., R.A. Feely, E.B. Jewett, P. Williamson, J. Mathis. 2015. Global Ocean Acidification Observing Network: Requirements and Governance Plan, 2nd edition, October 2015.

NOAA Ocean and Great Lakes Acidification Research Plan.

Peltzer, Edward. 2004. The Chemistry of a More Acid Ocean, MBARI Annual Report.

Reisdorph, S.C. and Mathis, J.T., (2014). The dynamic controls on carbonate mineral saturation states and ocean acidification in a glacially dominated estuary.  Estuarine, Costal and Shelf Science, Vol.144, 8-18,

Reum, J. C. P., Alin, S. R., Harvey, C. J., Bednarsek, N., Evans, W., Feely, R. A., Hales, B., Lucey, N., Mathis, J.T., McElhany, P., Newton, J., and Sabine, C. L., 2015. Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. – ICES Journal of Marine Science, doi: 10.1093/icesjms/fsu231.

Sigler, M.F., T.P.Hurst, M.T. Dalton, R.J. Foy, J.T. Mathis, and R.P. Stone. 2015. NOAA’s Alaska Ocean Acidification Research Plan for FY 15-17.

Other Articles

Bakker, D. C. E., et al. (2014). An update to the surface ocean CO2 atlas (SOCAT version 2). Earth Syst. Sci. Data, 6, doi: 10.5194/essd-6-69-2014, 69–90.

Cooley, S.R., and Mathis, J.T., (2013). Addressing ocean acidification as part of sustainable ocean development. In Ocean Yearbook, Volume 27, A. Chircop, S. Coffen-Smout, M. McConnell (ed.), Martinus Nijhoff Publishers, Boston, 29-47.

Feely, R.A., Wanninkhof, R., Sabine, C.L., Mathis, J.T., Takahashi, T., Khatiwala, S., Park, G.-H., (2013). [Global Oceans] Global ocean carbon cycle [in “State of the Climate in 2012”]. Amer. Meteor. Soc., 94 (8), S121-S123.

Mathis, J.T. and Feely, R.A., (2013). Building an Integrated Coastal Ocean Acidification Monitoring Network in the U.S. Elementa: Science of the Anthropocene 1: 000007, doi: 10.12952/journal.elementa.000007.

Sutton, A.J., Feely, R.A., Sabine, C.L., McPhaden, M.J., Takahashi, T., Chavez, F.P., Friederich, G.E., Mathis, J.T., (2014). Natural variability and anthropogenic change in equatorial Pacific surface ocean pCO2 and pH. Global Biogeochem. Cycles, 28, 131-145, doi: 10.1002/2013GB004679.

Yates, K.K., Turley, C., Hopkinson, B., Todgham, A., Cross, J.N., Greening, H., Van Hooidonk, R., Williamson, P., Deheyn, D., and Johnson, Z., 2015. Transdisciplinary science: a path to understanding the impacts of ocean acidification on ecosystems and society. Oceanography Magazine. doi: 10.5670/oceanog.2015.43


Comments are closed.