New ocean acidification study to launch in Prince William Sound

Click to enlarge

A remote-controlled glider, similar to the one shown here, is measuring ocean acidification in Prince William Sound from May to September. Photo credit: Richard Feely, NOAA/PMEL

Beginning this week, two surface wave gliders, resembling yellow surfboards, will be cruising around Prince William Sound as part of a five-month monitoring program to measure ocean acidification.   Simultaneously, state-of-the-art instrumentation installed on a glacier tour boat will monitor glacial runoff while an underwater autonomous glider will patrol beneath the surface looking for plumes of water that could be harmful to some species.

The project, funded mostly by the National Oceanic and Atmospheric Administration’s Ocean Acidification Program, is led by Dr. Jeremy Mathis of the Pacific Marine Environmental Laboratory and Dr. Wiley Evans from the University of Alaska Fairbanks (UAF) Ocean Acidification Research Center in partnership with the Alaska Ocean Observing System (AOOS).

Scientists estimate that the ocean is 25% more acidic today than it was 300 years ago, largely due to increasing levels of atmospheric carbon dioxide (CO2) from burning fossil fuels and changes in land use. Almost half of the CO2 emitted remains in the atmosphere, with the land and ocean absorbing the rest. When the ocean absorbs CO2, its pH balance changes through a process called ocean acidification. Because cold water can absorb more CO2 than warm water, acidification can disproportionately impact coastal regions around Alaska.

Recent publications by Dr. Mathis and Dr. Evans have shown that the process of ocean acidification may be worsened around tidewater glaciers due to the freshwater melt plumes that occur is summer and fall. “The glacier melt plumes have some really unique chemistry that can exacerbate ocean acidification and impact the environment in Prince William Sound and out into the Gulf of Alaska,” Mathis said. “Our goal is to use the latest technology to find out what’s happening so we can communicate that to Alaska residents and stakeholders.”

According to AOOS Executive Director Molly McCammon, the research effort builds upon the partnership developed with the OA Research Center at UAF to support statewide OA monitoring. The consortium supports five buoys around the State, as well as twice a year sampling in the Gulf of Alaska, and development of a Gulf of Alaska OA forecast model. Data from the monitoring efforts will be available on the AOOS website.  “With this new effort, we’re increasing our ability to view and understand Alaska’s oceans in four dimensions – two dimension space, depth and time.”

When completed in early September, the study will have provided the longest continuous observations of ocean acidification in Alaska to date.  “We are very proud to have the opportunity to partner with AOOS and be the leaders in glider technology in Alaska,” said Mathis.  “This work could be a game-changer in our understanding of how ocean acidification will impact our state.”


  • Jeremy Mathis, University of Alaska Fairbanks Ocean Acidification Research Center and NOAA Pacific Marine Environmental Laboratory,
  • Wiley Evans, University of Alaska Fairbanks Ocean Acidification Research Center and NOAA Pacific Marine Environmental Laboratory
  • Darcy Dugan, AOOS Program Manager
This entry was posted in News. Bookmark the permalink.

Comments are closed.