Monitoring ocean water level in remote shoreline locations using GPS reflectometry

Geoff Crowley, Andy Gisler, Irfan Azeem, Erik Stromberg, Adam Reynolds
ASTRA

Carol Janzen, Molly McCammon
AOOS

Nic Kinsman, Carven Scott
NOAA

May 22, 2018
Alaska Water Level Meeting, Anchorage AK
Goals of Presentation

- Description of sensor
- Primary uses of sensor
- Infrastructure and system requirements for installation
- Test examples of collections in Alaska
- Possible new sites where sensor(s) could be installed
Alaska’s 3,000 km northwestern coastline has the same number of water level measurements as Delaware’s 50 km coastline.
Description of sensor

• New type of water level sensor
 • Accurate real-time measurement of water levels and extraction of tidal constituents

• Features:
 • GPS-based
 • Low-cost
 • Non-contact with water
 • Low-profile
 • Remote-deployable (needs no infrastructure)
 • No maintenance
GPS - Introduction

• GPS Satellites transmit signals
• Receivers on earth receive and decode the signals
• GPS is primarily used for location
 • E.g. car navigation, smart phones

• GPS has lots of other uses:

ASTRA builds GPS receivers for space weather monitoring
 • Development funded by US Air Force SBIR program
Installation Requirements

- **Equipment/Resources**
 1. ASTRA Receiver
 2. Dual frequency GPS antenna
 3. Power source
 4. Data Storage and/or Communication method
Installation Requirements

• Equipment/Resources
 1) ASTRA Receiver
 2) Dual frequency GPS antenna
 3) Power source
 4) Data Storage and/or Communication method

• Two types of installations
 • Land-powered installation
 • AC power & Cellular or Ethernet Comms
 • Stand-alone installation for remote locations
 • Solar panels & Battery & Iridium Comms

• Specifications
 • <2.5 Watts for GPS receiver
 • < 5 Watts total for GPS & comms & storage
 • Antenna is 5” diam x 2”
 • Total system size < 1 cubic foot (not incl. solar panels)
 • Total system weight < 10 lbs (not incl. solar panels)
GPS Receiver Uses

• ASTRA GPS receivers have been deployed:
 • From the Arctic to the Antarctic
 • Aboard aircraft
 • On Cube-Sats (toaster-sized satellites)
 • On Liquid Robotics Wave Glider Buoy
 • August 2018 - two NOAA TAO buoys

• ASTRA GPS receivers used for:
 • Measuring Ionosphere Activity (scintillation, TEC)
 • Soil Moisture
 • Snow Depth
 • Water level & tides
• Astra deployed an array of GPS receivers in Alaska for measuring ionospheric activity

• 5+ year continuous operation across Alaska
GPS Reflectometry: Using “Noise” as a new “Signal”

- GPS Multipath (reflections) add noise to typical measurements
- Multipath causes interference
- Resulting signal amplitude depends on relative phase of the two contributing signals
- As GPS satellites rise and set, varying signal amplitude contains information about antenna height above reflecting surface
AOOS Ocean Tide Pilot Program

Anchorage

Seward (GPS Installation)
Seward Pilot Installation

- ASTRA receivers 200m apart
 - Alaska SeaLife Center
 - Seward Marine Center

- NOAA Tide Gauge is 2400m from ASTRA receivers
GPS Antenna Location

- Antennas need a good view of the water
- In the Northern Hemisphere, it helps to have a clear view to the south
GPS Antenna Location

Antenna: 2” tall, 5” diameter
Year-Long Data Series

- Over 1 year of continuous water level data
- 5 meter tidal swings
Validated against NWLON data

- Accurate measurements
- Low cost system
- Easy to deploy
Accurate Measurements

• Accurate measurements
• Low cost system
• Easy to deploy
Frequency Analysis

- Frequency analysis shows tidal harmonic constituents
- ASTRA Receivers reproduce diurnal and semi-diurnal tidal motions
Accurate Tidal Constituents

<table>
<thead>
<tr>
<th>Tidal Constituent</th>
<th>ASTRA (85.6%)</th>
<th>NOAA NWLON (96.9%)</th>
<th>NOAA Predicted Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>1.146 ± 0.039</td>
<td>1.195 ± 0.018</td>
<td>1.198</td>
</tr>
<tr>
<td>S2</td>
<td>0.420 ± 0.041</td>
<td>0.458 ± 0.017</td>
<td>0.411</td>
</tr>
<tr>
<td>N2</td>
<td>0.199</td>
<td>0.206</td>
<td>0.245</td>
</tr>
<tr>
<td>K1</td>
<td>0.323</td>
<td>0.362</td>
<td>0.463</td>
</tr>
<tr>
<td>O1</td>
<td>0.270</td>
<td>0.285</td>
<td>0.289</td>
</tr>
</tbody>
</table>

ASTRA Constituents within 5 cm (!) of NOAA at 10% of cost.
Install Locations

- These receivers could be installed anywhere along the coast
 - Preferably with a southern view of the water, but we can use GPS satellites that are setting over the northern horizon
- We are planning additional installations in Anchorage and Homer
Install Locations

Many “North” facing coastlines have multiple options for installation

E.g. Kaktovik
Sensor description

<table>
<thead>
<tr>
<th>Sensor description</th>
<th>ASTRA GPS Receiver</th>
</tr>
</thead>
</table>

Primary use(s)
- Ionospheric space weather
- Water level, tides
- Snow depth
- Soil moisture

Test examples in Alaska

![Test examples in Alaska](image)

Possible New Sites

![Possible New Sites](image)

Infrastructure requirements:

Benign to Extreme Environments

- Land-based
- Standalone

- Kaktovik
Summary-2

- Accurate water level measurements
 - < 5 cm tidal constituents
- Installations possible in remote locations
- Low cost versus legacy NWLON sensors
- Low-cost means we could deploy multiple locations
- Sole-source is OK because this is an SBIR product
Novel Lidar for Water Measurement

Laboratory demonstration

These data highlight several milestones:

1) seamless land-to-water transition

2) <1 cm depth resolution

3) high precision subsurface mapping clearly identifying the two small rocks
Water Depth mapping

- Flowing water
- Depth Ranging from ~15cm to 1cm
- Centimeter Precision
- Bathymetry (Rock Garden)
- Notable depth change due to sloped flume

Water Depth (cm)

1cm x 1cm x 1cm resolution